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1. INTRODUCTION

Segmentation and boundary detection algorithms are basic tools for extracting global
features out of digitized data. Techniques based on variational methods achieve the result
(a segmented image) by minimizing a cost functional. In 1985, Mumford and Shah
introduced a mathematical model that captures the essential features that must be
considered when solving the segmentation problem (Referencé 1). It is a multi-scale
technique that allows the extraction of features at different levels of detail (scale). It is
also a multichannel technique that can be used to segment images of a scene when
registered multiple data channels for the same scene are available. These may be data
channels from various sensors, hue channels, preprocessing channels such as wavelet or
other transform channels, etc.

The Mumford & Shah (M&S ) Functional (References 1 and 2) has the form

EwK)=a® [lu-gf du+ [|Vil du+a-K), (1.1)
Q-K Q-K

where Q denotes a "rectangle”" in R?, d €{1,2,3,--}, g:Q— R° denotes the "image"
(g is pu-measurable), ¢ = number of "channels", ¢ € {1,2,3,---}, and #:Q — R® is an
approximation to g belonging to a set of functions ®. The rectangle Q is decomposed
into a finite collection of disjoint open sets O, (n =1, 2, ..., N) and their boundaries

N N
K= U 20, ; so that Q = [U O,,]u K, and K is sufficiently nice to have a "length",

n=1 n=1

denoted by £(K). The disjoint open sets O, (n =1, 2, ..., N) and their boundaries
N
K= U 20, together with u are called a segmentation of (Q, g).

n=1
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The goal is to construct 2 things:

(a) A smoothed ideal image, u:Q — R°.
(b) A set of boundaries, K < Q;

u and K are found by minimizing the functional E.

The first term on the right hand side (RHS) of Equation 1.1 ensures that u is a
faithful representation of g, the second term ensures that u is as smooth as possible on
each open set O, , and the last term prevents the boundaries from growing too large. The
parameters ¢ and A are weighting factors that control the quality of the approximation
and the coarseness of the segmentation.

The Weak Continuity Constraint models of Blake and Zisserman are another
collection of effective techniques for segmentation, boundary detection, and smoothing of
data (Reference 3). In particular, the weak string constraint and the weak membrane
constraint can be considered to be the discrete forms of the M&S functional in
dimensions 1 and 2, respectively. Blake and Zisserman developed a technique called
Graduated Non-Convexity (GNC) (Reference 3) that can be used to minimize the discrete
M&S functional.

The GNC method relies on a homotopy between the cost functional and a convex
approximation to it. The minimum of the convex approximation is easily found. The
convex . functional is gradually deformed via the homotopy until it converges to the
original functional. At each step in the gradual deformation a minimization is performed.
The collection of minimal points so obtained forms a path that leads to a minimum of the
original functional. However, this technique was developed only for single channel data.

In this paper we extend the GNC method to the multichannel setting (that is, vector
valued data). We develop the mathematical foundation for the technique in the
multichannel setting. The most important technical issue of this method is the convex
approximation: whether it exists and how it is obtained. In the multichannel setting, in
dimensions 1, 2, and higher, determining if the convex approximation exists, as well as
the specific details of how to obtain it, are the problems to be resolved.
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A summary of the theory behind the GNC method in the multichannel setting for
dimensions 1 and 2 will be presented here as a collection of definitions and propositions
with proofs. The results for dimension d > 3 will be stated here without a proof. The
proof follows the same steps as the proofs for d =1, 2.

Section 2 contains an outline of the GNC method. Section 3 contains a complete
summary of the multichannel theory for dimension 1 in the form of a series of
propositions that lead to the convexity result, Proposition 3.8. In Section 4 we present the
theory for dimension 2 in the same form, leading to Proposition 4.4.

2. THE GRADUATED NON-CONVEXITY METHOD

For completeness and to introduce the reader to the GNC method, the idea behind the
method is briefly described in this section in the one-dimensional, single channel setting
(see Reference 3 for more details).

The Discrete Mumford & Shah Functional for one-dimensional and single channel
data x =[x,,%,,...,xy]" € R" has the form

N N-1 N-1
E@a)=> (4 —x) + X Y [, —u(1-a)+a) a;, 2.1
i=1 i=1 i=1

where u=[u,4,,....,uy]" €R”, a=[a,,a,,....ay), a; €{0,]} Vi, and 1 and o are

positive weights. This is called The Weak String Constraint in Reference 3.

The three terms on the RHS of Equation 2.1 play, respectively, the same roles as the
three terms on the RHS of Equation 1.1. Here, x plays the role of g.
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We seek a vector u that is smooth and is close to x. The vector u is found by

minimizing Equation 2.1 with respect to # and the Boolean variable a.

The minimization with respect to a can be done analytically (Reference 3), as

follows.
Elimination of the Boolean Variables
Let h: Rx {0,1} > R be given by h(t,b) = 2’t*(1-b)+ab (t €R,b €{0,1}), and let

g£:R— R be given by

27 if | <Ve
g(t) = : =
if | = Yey.

Note that, by putting the last two summations in one, E can be written in terms of # as:
N ) N-1
E(u,a) = Z(ui - X;) +Zh(ui+1 —U;,a;). (2.2)
i=1 i=1

Moreover, since g(t)=hrr%éxl1‘ h(t,b) VteR, it follows that, for each ueR", the

minimum of E over a is given by
N N-]
Fuy=Y.(u-x) +) g, ~u), u= [4,,ty 5.ty ]" €RY. (2.3)
i=1 i=1

Theorem 2.1 er{nit}lN E(u,a)= F(u) VueR".
ael0,]
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The Convex Approximation F,

The function F is non-convex. As noted above, the GNC method consists of
approximating F with a convex function F, and obtaining a homotopy between F)

and F. The minimum of the convex approximation F, is easily found (e.g., by steepest
descent). The convex function is gradually deformed via the homotopy until it converges
to the original function. At each step in the gradual deformation, a minimization is
performed; the starting point in the minimization procedure is the minimum of the
previous function. The collection of minimal points so obtained defines a path that leads
to a minimum of F.

The homotopy is defined in terms of a collection of functions F, (0<y, <y <),
such that F, — F' uniformly as y — .

The functions F, are given by (2.3) with g replaced by g, : R — R defined by

21 if [|<q
g, (N={a-ty(-r? if g<ld<r (y>0), with q=-;;— and r? = (> + =
r y

A2
a if r <l

Remark 2.1. g, — g uniformly as y — .

The GNC theory consists of showing that there exists a positive value of y

(¥ =y, =1/2) for which F, is convex. By letting y(f) = Zti (0 <t £ 1), one obtains
the desired homotopy H:R" x[0,1] = [0,0).

F) for t=0,ueR"

H(u,f) =
(.0 {F,(,)(u) for te(01],ueR".



NAWCWD TP 8349

Remark 2.2. Since F, — F uniformly as y — 0 and F, () varies continuously with

y and u, the function H is continuous on RY x[0,]] and, therefore, it defines a
homotopy between F' and F, .

In this paper we present the generalization of this theory to the multichannel setting in

dimensions 1 and 2. The extension to dimensions 3 and higher follows the development
of the theory in dimension 2 in Section 4. The value of y for which F, is convex

satisfies y =55, where d =1, 2,3, ... is the dimension of Q.

In the multichannel setting, each x; and each u; are vectors of dimension ¢, where ¢
is the number of channels. The obvious thing to do is to introduce a vector norm
(Euclidean Norm) in Equations 2.1 and 2.3, as in the M&S functional. This leads to the

one-dimensional ¢-channel model
N 5 N-1 ) 2
Ewa) =Y, ~x | + Y {2 s —ulf 1-a) +aa,}
i=1 i=1

and

N N-l :
F(u)= Zlui —xi”2 + Zg(||ui+1 "ui”) s
i=1 i=1

with w=[u,"u," yoostty’ )" €R™, w, =[uy,, Uy, 51, €R° (1Sk<N), and

a=[a,,a,,,ay] €{0,1}".

The theory follows the same steps outlined above. The greatest challenge was to
establish convexity in the presence of the vector norm instead of a scalar absolute value.

The theory does go through even in the presence of a weighted vector norm. It becomes
evident that the value of y for which F, is convex must satisfy
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L1 =2 (number of termsin G) and that the dimension d = (number of terms in G). Thus,
in general, y, = —21;, where d =1, 2, 3, ... is the dimension of the domain Q. (G is

defined in Definition 3.10, with £ = N, for d = 1 and in Definition 4.5 for d = 2,).

We now present a collection of definitions that constitute the generalization of the
GNC method to the multichannel setting in dimension d = 1.

3. THE 1D-MULTICHANNEL GNC CASE

3.1. DEFINITIONS

3.1 R— R isgivenby g(r) e i = fi 0
‘:R—> 1s given = , for a>0.
d _g 78 a if |z,
2 if [f|<q

32. g,:R—>R isgivenby g, ()= a-ty(f|-r)? ifg<llsr (y>0),

a if r<|e

wih ¢=-2 and r=aG+—).
Ar y A

33. g':R— R isgivenby g*'(t)=-1yt* (teR).
34. h:Rx{0,]} > R isgivenby h(t,b)=1t>(1-b)+ab (teR,be{0]}).

3.5. ¢ denotes the number of channels per pixel; N denotes the number of pixels.

N
3.6. D:R™ > R isgivenby D(u)= leuk - X ||f,, >
k=1
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where u, =[u,, %, - ] €R® (k=12,-,N), u=[u i, u, ] e RY,

W = diag(w,,w,,-,w,) (w, >0), and the weighted norm || |, :R“ —[0,0) is defined

(4
as bl = 3w
i=

3.7. L :RY R is defined as L, (u)=u,, —u, for k=1,2,---,N-1 and for
k k k+1 k

k=N, Ly(u)=u—uy, w={u a1 € RY).

4
38. G:R™x{O,}" - R isgivenby G(u,a)= Y h(|L W)|,,a,), with £<N,u
k=1

asin 3.6, and a=[a, a, - a,]" e{0O.1}".
39. F:R¥™x{0}" >R isgivenby F=D+G.
4
3.10. G:R™ >R isgivenby Gw) =) g(L,w)|,) @eR™),{<N.
k=1
311. G, and G*:R™ — R are defined as G with g replaced by g, and g~,

respectively.

312. F, F,, and F*:R™ > R are defined, respectively, as F=D+G,
F, =D+G,, and F*=D+G".

y’

3.2. CONVEXITY OF F}, : R >R

Proposition 3.1. Suppose f:R— R, f and f are continuous, f " is piecewise .

continuous, and " = 0. Then, f is convex.
Proposition 3.2. If g=(g,-g"):R—> R, then

(a) ¢ and g are continuousand F ()20 V¢20.
() g

" is piecewise continuous and g (£)=0 Vr.
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Corollary 3.1. §=(g, -g"):R— R isconvex (by Propositions 3.1 and 3.2).

Proposition 3.3. 1If f:R" — R is convex and L:R" — R" is linear, then foL is

COonvex.

Proposition 3.4. If f:R— R is convex and non-decreasing for 7>0 then,
feolll, : R" = R isconvex.

Corollary 3.2. go||, :R° - R is convex (by Corollary 3.1 and Propositions 3.2 and
3.4).

Corollary 3.3. goll|, oL, : R™ — R is convex Vk =12,...,£ (by Proposition 3.3 and
Corollary 3.2).

Corollary 3.4. F,—F*:R"™ — R is convex (because it is a sum of functions of the

form goll{,, ° L, , which are convex by Corollary 3.3).

4
Proposition 3.5. The Hessian D*F* satisfies D°F* =2-W —y Y (DL,)"W DL, , where

k=1
the constant matrix DL, denotes the total derivative of L, (k=1.2,...,4),

W = Block diag(W,W,---,W), and W = diag(w,,w,,--,w,).
%,_____J

N ~times

Proposition 3.6. The Hessian D?F* is positive semidefinite for y small enough.

Corollary 3.5. F*:R™ — R is convex for y small enough (because for ¥ small

enough D?F* is positive semidefinite and continuous).

Corollary 3.6. F, : R™ — R isconvex for y small enough (because by Corollaries 3.4

and 3.5, F, = (F, — F*)+ F" is a sum of convex functions for y small enough).

Proposition 3.7. If L, : R™ — R° are given by Definition 3.7, then

11
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N 1 —1
> (BL) WDL, =W:AAW?,

k=1

where A isan Nec x Nc "block circulant" matrix with blocks of size ¢x c:

11 0 0

0 -1 1 0 0
A= . .
y 0

0 0 -1 I

1 0 0 -1

Proposition 3.8. 1f £=N, L, :R™ — R are given by Definition 3.7, and y = 4, then
y satisfies Proposition 3.6, and Corollaries 3.5 and 3.6.

3.3. THE PROOFS

Proof of Proposition 3.1

Since "= 0 and is piecewise continuous, the following holds for s < ¢

o< [f@d=Y |1 @3 (161 6],

where s=x,<x, <---<x, =t and the set {x;,:i=0,1,---,n} contains the points of

discontinuity of /" inside the interval [s,#]. But f  is continuous, so f (x;) =/ (x])
for all i. Consequently J F(x)dx = f ()= f ()20 for all s<¢. This result and the

fact that f is continuous lead to the following two conclusions:

12
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If x<y then f()~f()=[fOdtz[f @t =1 )ly-x.

If x>y then f(x)~f()=|f O <[ f @t =f @Dx=].

The two inequalities above imply f(3) = f(x)+f (x)[y—x] for all x,yeR.
Therefore, f is convex by Reference 4, Proposition 4, page 178.

Proof of Proposition 3.2

(a) Since g=g, —g" and g* € C*, we must show that g, and g; are continuous.
The even function g, is continuous on R if it is continuous on [0,%), which it clearly is,
except possibly at ¢ and r. Continuity of g, at g is established by showing that
Zt* =a-1y(t-r)* at t=gq. Elementary manipulations verify the above identity.
Continuity of g, at r is established by showing that a = a - Tyt —-r)? at t =r, which

is obvious. Thus, g is continuous.

Next, differentiate g, .

2A%t iflf|<g
. y(r—1t) ifgst<r R
g, (1= . 3.3.1)
—y(r+t) if —r<t<—q
0 if jt| > r.

Since g'r is an odd function, it suffices to establish continuity at g and r . Continuity at

r is established by showing that y(r —¢) = 0 at ¢ =r, which is obvious. Continuity at ¢
is established by showing that 24*t = y(r —t) at t = q. Simple algebra and the fact that

~

rl = a(Z+ ) and g = 4 verifies the above identity. Thus, g is continuous.

13
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That g'(f) 20 for ¢ >0 is clear from Equation 3.3.1 and the fact that (") () =yt
(teR).

(b) Differentiating Equation 3.3.1 yields

22 ifl<q
g, (1) =1-7 ifg<l|<r
0 if lt‘ >r.

Since (g*) (f)=-y (t €R), we have

227 +y ifll<q
2 (=40 iqu|t|Sr
y if |t| > r.

Thus, &' is piecewise continuous and g ()20 forall 7.

Proof of Proposition 3.3

Choose x,y € R"” and 0 <t <1. Then, since L is linear and f is convex we have

feoL((1-Nx+p)=f((A-0)Lx+1Ly)) <

A-0f(Lx)+tf (L) =(A=1)- fo Lx)+1-f o L(y).
Thus, the composition f o L is convex.

Proof of Proposition 3.4

14
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Set a=|(1-Nx+p), and b=1-1)x|, +1y],, *.»eR",te[01).

Since 0<a <b and f is non-decreasing for ¢ > 0 and convex,

f@<f® <=0 f(x], )+ £, -

Thus, follf, :R" = R isconvex.

Proof of Proposition 3.5

N 4
Recall that F*=D+G*, D)= |, -xl,. G @=D g (L],
k=1 k=1

_ T T : TaT Ne — T c
uslu tuy tuy' ] eR™,and u, ={u,, uw,, -y, .} €R® for

k=1,2,3,---,N.So,

4

D) I &
o _0'}4..2

i k=

. 2
1'Vm (ukm - ka) = 2wj (uij - xij) =

—

m=1

o

<r.i<g < i<
aau,  |2w, ifrs=ye ASPIsN1ss7=0).

s J

5 D(u) {O ifrs #ij

Thus, the Hessian D?D of D satisfies D?°D =2-W , where
W = Block diag(W,W,---,W) isan Ncx Nc - matrix with W = diag(w,,w,,-*,W,).
%—/

N —~times

Next, we compute the Hessian D?G* of G*. For this we need the partial derivatives
of the compositions g*oL,, where g* denotes the composition g*ol||,; that is,

15
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F =g (i) =- 1, = -1 wx?  (xeR) and G*w)=Y 8 (L)
i=1

k=1

(u e R™).

Let Vg*(f) denote the gradient of g*:R°— R evaluated at f € R° and let DL,
denote the total derivative of L, : R™ — R® (1<k<£).If t=[t, t,---1,]" €R°,then

_ ~ 4 a~+ 0’;~+
Vg+(t)=|: P (l‘),é—(f),"', 0,,% (t):l=_7[wlt]=w2t29'“awctc]'
1 2 c
Ly, (w) E T R
L. (u My M | P
If L, (w)= kz( ) , then DL, = a;" Gz . Prxe (1<k<?).
ch(u) _% 'g;f—: vt %ﬁ-

Note that Vg*(¢) is a 1x ¢ - matrix and DL, is a ¢x Nc- matrix. Since L, is linear,
DL, is a constant matrix (1< k < /).

The gradient of the composition g* o L, is obtained using the chain rule:

V(8" o L)) = (VE '

o Lk(u))-mk , (weR™). (3.3.2)

Since, by definition, V(2" o L,)(w) = [ 8" (L (), 2= 8" (L W), -+, 35 B (L, @)))],

it follows from Equation 3.3.2 that

16
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2 g (L) - Zﬁg (L)-ZEm, weR™, ) e, 02, (V.0
1<k<0)

~+

g

Similarly, since :R° >R,
o (og” 5g* JL,
L — 3.3.3
5urs ( tm ( ( ))) Zl g (u)) aurs ( )

where (u € R™, (r,s) € {(1,]1), (1,2),--- (N,c)}, 1<k < 2).

km Lklll

g (L) = ZZ g and, since 22

k=1 m=1 if if

Finally, aa
U

£ c
is a constant, 52 G w=>) g (L, (@) |- aL"”’.
k=1 m=1 o ot ug

rs m

Applying Equation 3.3.3 leads to

0”2~+ oL o"L
G ko han , RNc’ , d
P 0,, (u) = Z Z Zat o (Ly () . 3 (ue (r,s) an

k=1 m=1l n=1 rs uij

(lsJ) € {(131)’ (152)’ "' (N,C)} )

Next, since

17
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~+

5t (t)——}/ ‘m m’ (t=[t] t2 -'-tc]TERC,ISmSC),
>g* ~y-w, ifn=m

H=-y-w,-0,, =
oo, =Y Y Om {o ifnem, '

Hence,
oL, JL

G u &k Tk ,

auﬂ&,j @)= ;Z T G, o,

where (u € R™  (r,s)and (i,j) €{(L1),(1,2),---(N,c)}), which implies that

D*G* = -y - i )'wDL, .

k=1
Adding D?D and D?G* completes the proof.

Proof of Proposition 3.6

It will be shown that, for ¥ small enough, "D*F*u >0 Vue R™ . The norm of the
linear mappings DL, : R — R° will be instrumental. These norms are defined as

IpL, II—HS”up IBL, 4

w2

18
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N
where |45 =u” Wu=Y |u|;, and |u[}, =u/Wu,, (k=1,2,--,N) (see Definition
’ k=1 )

3.6).

[4 [4
u'D*F*u = uT[Z-W—yz(DLk)TWDLk]u = 2u"Wu-yY u"(DL,)"W DL,u
k=1~

k=1

£ ' £
2 |y -7 3 IPL, 2 2y -y PLI

(4
2-r ol |-

4
Therefore, if y < 7—2—, then [2 -r>.|pL, “2} >0 and u"D*F*u >0 VueR™.

2L -
k=1

Hence, D?F" is positive semidefinite for y small enough.

Proof of Proposition 3.7

First we'll show that DL, is a block matrix of the form

DL, =[1:0:---:0:-1] (3.3.4)
and

DL, =[0:-i0:=1:1:0:---30] for k=1,2,-,N—1, (3.3.5)
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where —1 appears in the k-th block, I in the (k+1)-st block, I denotes the ¢ x ¢ identity

matrix, and there are N ¢ x ¢ -blocks.

The n-th component of L, : R™ — R° is given by

LNn(u)_'_-ul,n_uN,n (n=l,2,---,c).

Thus, the [n,(i, j)]-th entry of DL, , denoted by (DLy), ,, isgivenby

0 ifizl, N

oL, |0 ifj=#n
DL L = N"= ls S, IS.SN, 1_<_S .
( ”)"""J’. u, |-l ifi=N andn=j (oS 1S j=e)

)

1 ifi=1 and n=j
(3.3.6)

The i-th ¢ x c-block of DL, isdenoted by (DLy). . (1<i<N).Its (n,j)-entry is

oLy, (1<n<c,1< j<c).ByEquation3.3.6, (DLy). . satisfies

ou..

i

0 ifizl, N
(DLy).go =11 if i=1
-1 ifi=N.

This establishes Equation 3.3.4.

For 1<k <N -1 the n-th component of L, : R — R® is given by
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L, @) =u,,, —u,, (n=12,-,c).
Thus, the [1,(i,/)]-th entry of DL, , denoted by (BL,), ., isgiven by

0 if ik, k+1
AL 0 ifj#n
DL,),;y=—2= 1<n<e, 1<i<N, 1<%
BLu Gu; |-1 ifi=k and n=j (<ns<e 1< J

1 if i=k+1 and n=j

The i-th ¢xc-block of DL, is denoted by (DL,),;., (1<i<N).Its (n,))- entryis
oL

kn

ou.

if

(Isn<c¢,1<j<c).ByEquation3.3.7, (DL,),,. satisfies

0 ifizk, k+1
(DL ).y =31 ifi=k+1
-1 ifi=k.

This establishes Equation 3.3.5.

Now, the product (DL, )" W DL, clearly has the form

| w0 0 -W]
0 0 0
(DL WDL, = {W[I 0 -+ 0 -I]=| :
0 0 0
-1 ] -W 0 0 W

21
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and

0 - 000 0 !0 - 0
. L :
L | 1
0.1 040 010 0
oLy worL =0 U 0 O ke
‘ C0 s 00 W0 e 0 T
0 - 0,0 010 - 0
IR
0 - 010 010 - 0

where W appears in the (k,k)- and (k+1,k+1)-block, and —W appears in the
(k+1,k)- and (k,k +1)-block. Consequently,

W W0 0 -
W W 0 e 0
SoLywoL = o AT .
& R
0 0 W oW -W
W0 0 -w oW

[Ty

1 — N —_—1 o —
Since W?ATAW? has the same form, it follows that > (DL, )W DL, =W :A"AW*.

k=1

Proof of Proposition 3.8

22




NAWCWD TP 8349

—
2

By Propositions 3.5 and 3.7 we can write D2F* as D2F* = 2. —yiW i ATAW ™ .
So, as in the proof of Proposition 3.6,

u'D?F*u = uT[Z-W-y %ATAVV_%]u = 2 Wu—y -u"WiATAT *u

I
N
S|
s

I
[\
|
=
=
N

Since y =4 , ¥'D?F*u >0 Vu e R™ provided |A|" <4.But |A]" equals the largest
eigenvalue of A”A . Thus, the proof will be complete once we show that the eigenvalues
of ATA are bounded by 4.

The matrix ATA is a "block circulant”" matrix:

21 -1 0 0 -I]

-1 21 -1 0 0

, 0 -I 21 -I :
ATA = .

o 0

0 0 -I 21 -I

-1 0 0 -1 21]

Since the blocks of A”A are multiples of the identity matrix, A"A has the same
eigenvalues as the circulant matrix
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2 -1 0 0 -1
-1 2 -1 0 0
o -1 2 - :
A= ol
0 0 -1 2 -1
-1 0 0 -1 2

which are given by the following expression.

Fact 3.8.1. If Ais a circulant matrix, then the eigenvalues of 4 are given by (Reference
5)

N
27 (r-1)
Aw=D A& m=1,2,---, N.
r=1

Thus, the eigenvalues of the matrix 4 above are given by

Y.l

A =2-e"V _ "% =)[1-cos(2z )], m=1,2,---, N. (3.3.8)
N

m

Since —1<cos(2z%)<1 for all m, 4, <4 for all m. Note that if N is even, then
A,=4 when m=%.1f N is odd and m=2%1, then 1, =2[l+cos({)]—>4 as

N — o . Thus, the upper bound 4 in general cannot be reduced.

24




NAWCWD TP 8349

4. THE 2D-MULTICHANNEL GNC CASE

4.1. DEFINITIONS

41. D:R™ R isdefinedas D)= Y |u, x| . where

1€ign
I1sjsm

= e T ¢ 7 1
u; =[u;, v, u;.]" €R° (1<i<n1<j<m),

- T, To. ot T, , T., T. ..: Ty .0, I T, . .: Tqr nme
usluy, tuy iUy, Tl Uy Dot lUy, Lol T Uyt DU, 1" eR™,

W= dlag(wl ,WZ,"',WC) (Wi > 0) s
and the weighted norm || |, is defined as ny”fy = iwi y2.
i=]

42. M, :R™ —> R isdefinedas M;(u)=u;;, —u,; for 1<i<nlsj<m-1

and M, (w)=u;, —u, for 1<i<n and ueR™ asdefinedin 4.1.

m

u, for 1<i<n-11<j<m

i+l,j — Yij

N;:R™ — R° isdefinedas N;(u)=u

and N, (w)=u;—u,,; for 1<j<m and ueR™ asdefinedin 4.1.

43.  G:R™ x{0,1}" x {0,}"™ — R is given by G(u,a,b) = H(u,a)+V (u,b), where

IN i (“)‘

Awa)= Yok o (M,@),.0), V@b = 3 by (N5,
1

I<i<n sisn
1< jsm 1sjsm

— T nm
as= [all al'l alm a2| a22 T a2m anl anZ anm] € {091} H
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b

nl

b = [bll b12 b bZl b22 b bn2 oo bnm]T € {Oﬁl}mn’ ue anc

im 2m

as defined in 4.1.,and &, , : Rx{0,]} - R is defined by

by (t,b)=2P(1-b)+ab (1 eRbe{0]}).

44. F:R™ x{0}™ x{0,}" - R isgivenby F=D+G.

45. G:R™ = R isgivenby G(u)= H(u)+V(u), where

H(u) = Zgil,a, (HM,, (u)”W) N V(u) = glz’az (l N!I (u)”W)’ ue Rmnc
I<is

Isisn isn
1<jsm 1Sjsm

as definedin4.1.,and g,, :R— R isdefined by

2 if <Yy

t) = R for >0.
810 (1) {a if |¢] > Y24

46. G,:R™ — R isdefinedas G with g, , and g; ,, replaced by g, , ,, and
respectively, and g, , , : R — R is defined for a >0 by

g .
ViAa.ay?

e if [f|<q
g aa)=1a-17(d-r" if g<lf<r,
| if r <
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a 2 1
>0 and g=—, =a(—+—
Y 9= r? (y pe

47. G":R™ —> R isdefinedas G with g, , and g, , both replaced by
g :R—> R definedby g'(1)=-1yt*> (teR).

48. F,F,, and F e R";”" — R are defined, respectively,as F=D+G,
F,=D+G,, and F*=D+G".

4.2. CONVEXITY OF F}, : R —> R

Proposition 4.1. F, - F* : R™ — R is convex (proof: same as Corollary 3.4).

Proposition 4.2. The Hessian D?F* satisfies

D*F* =2.7,, -y-| Y.(DM,)"W DM, + > (DN,)'WDN, |, 4.2.1)
I<ign 1sisn
IS jsm 1<jsm

where the constant matrices DM, and DN;; denote, respectively, the total derivatives of

M; and N, (1<i<n1<j<m), W, = Block Diag(W,W,--, W), and
nm—times

W =diag(w,,w,, -, w,).

Proposition 4.3. If M, : R"™ — R° and N, : R™ — R are given by Definition 4.2,

then
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-

> (DM,)W DM, = 7i.Q'0-W,
1<isn
1<jsm

3 (42a)

=

where Q = Block Diag(A,,,A, ,,A, ) and A, is the mcxmec "block circulant”

n—limes
matrix
-1 1 0 0]
o -I T O 0
A, = A 0 ,  with blocks of size ¢xc.
0 0 -1 I
] 0 0 -Ij
> (DN,)'WDN, =W,3 - ALA, -y, (4.2.b)
1sisn
1<j<m

where A, is a "block circulant" matrix of the same form as A,, of size nmc x nmc and

blocks of size mc x mc.

Proposition 4.4. If M, :R™ — R° and N, : R™ — R° are given by Definition 4.2

and y = ¥, then the Hessian D?*F* is positive semidefinite. Thus, F* is convex.

Corollary 4.1. If M;:R™ — R° and N; : R™ — R® are given by Definition 4.2 and
y = Y ,then F, is convex (proof: same as Corollary 3.6).
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4.3. THE PROOFS
Proof of Proposition 4.2

Let Ind denote the set of indices {(i,j,k):1<i<n,1<j<m1<k<c}.

oD(w) 0
ou

Z Zwk (U —x,.jk)2 =2w,(u,, —x,,), (r,5¢t)elnd

rt Oty | 12n o1
I<jsm

. 0 if ik#rst
J D) ={ FogkEnst e, (st e dnd.

Ou Ou,, 2w, if ik =rst,

Thus, D2D is an nmcx nmc block matrix with (nm)* blocks of size ¢xc. All the

blocks are zero except for the nm diagonal blocks, which are all equal to 2-W. Thus,
D?D=2-W,

nm*

Next, we compute D2H* and D?/*. But H* has the same form as G* of the 1D-
case (see Proposition 3.5), except that it involves M and a double sum (sum over

i,j, 1<i<n,1<j<m)instead of L, and a sum over k, 1<k <N. Thus, D2H* has

the same form as D2G* of the 1D-case, namely

D2H* =—y > (DM,)"'W DM, .
1gign
I<jsm

Similarly, D?*V* = -y > (DN,)"W DN, . This establishes Equation 4.2.1.

1gisn
Isjsm
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Proof of Proposition 4.3

The total derivatives DM ; are matrices of dimension ¢ x nmc. The columns of these

nmc

matrices are indexed by the indices of the components of the variable u € R", namely,

the triplets (r,s,?) € Ind ordered by the rule

@(,7,k) <(r,s,t) < i<r, or
i=r and j<s, or
i=r, Jj=s, and k<t.

Therefore, these matrices (as well as the matrices DN;) naturally decompose into nm

blocks of size c¢xc. These blocks can naturally be indexed by the tuples
{(i,j):1<i<n,1< j<m} ordered by the rule

G, 7)< (r,s) < i<r, or
i=r and j<s.

Moreover, since W is a ¢xc¢ matrix, the products (DM,.,.)TW DM, are nmcxnmc

matrices that naturally decompose into:

(@) (nm)* blocks of size ¢xc,  or
(b) n? blocks of size  mcxmc, or
(c) m* blocks of size  ncxnc.

This observation also applies to the products (DN !.,.)TW DN;. In case (a), the cxc

blocks will be indexed by pairs of tuples ((i,),(r,s)), 1<i,r<n, 1< j,s<m.In case
(b), the mc x mc blocks will simply be indexed by tuples @i,r), 1<i,r <n.In case (c),
the nc x nc blocks will be indexed by tuples (j,s), 1< j,s<m.

30




NAWCWD TP 8349

First we'll show that DA,

n

and DM are block matrices of the following form:

DM

im

=[0 010 00 - 0, (1<i<n) (4.3.1)

where 1 denotes the ¢ x ¢ identity matrix and appears in the (i,1) - block, -I appears in
the (i,m) - block, and there are nm blocks of size ¢ x ¢. And

DM, =[0 -+ 0 I 1 0 - 0], (A<i<n, 1Sj<m-1) 4.3.2)

where -1 appears in the (i, j) - block, I appears in the (i, j +1) - block, and there are nm

blocks of size ¢x c.

Choose i €{l,2,---,n}. The k-th component of M,, : R"™ — R° is

Mim,k (u) = ui,l,k Uk (1 <k< C) .

Thus the [k,(r,s,t)] entry of DM, , denoted by (DM, ), ;.. »18

(0 if rei
0 ifr=k
aMim,k .
(DM, sy = Y =q0 ifs#lm , (rys,t)elnd, 1<k<c. (43.3)
s 1 ifr=i,s=,t=k

-1 ifr=i,s=mt=k
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The (r,s)-th cxc block of DM,, is denoted by (DM,,),(, .., (1Sr<n, 1<s<m).

m

oM,
Its (k,t) entry is —ﬁ—L"‘ (1<k<ec, 1<t<c). By Equation 4.3.3, (DM,,), .4

ros

satisfies

J ifr=is=m

7 0
(DM,,). 1 = 1 I

This establishes Equation 4.3.1.
Choose ie{l,2,---,n} and je{l,2,---,m-1}. The k-th component of
M, : R™ — R° is

My, ) =1 04 — Y4 (1<k<o).

Thus the [k,(r,s,t)] entry of DM,

ij 2

denoted by (DM i ) k(rs0)? is

0 ifr=i
0 ifr=k
oM, L
(DM ;)i (runy E—O:,;—'—={ 0 ifs=j,j+1 , (r,s,0)elnd,1<k<c. (434)
1 if reiys= j+lr=k
-1 if r=i,s=jr=k
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The (r,5)-th cxc block of DM, is denoted by (DM;).(,,,, (1Sr<n, 1<s<m).

4

M.
Its (k,t) entry is P PR (1<k<ec, 1<t<¢).By(4.3.4), (DM,),,,,. satisfies

rs,g

0 ifr;ti
. DIM *(r.* . . . - — Tt —_—0 = .
G I ifr=i,s=j+1

1 ifr=is=j

This establishes Equation 4.3.2.

By Equation 4.3.1 the product (DM,,)” W DM, has the form

m

0 - 0! 0 0'0 -~ 0

.l I .

: i : i :

0 -~ 010 010 0

0 - QI W 0 - 0 -Wi0 - 0
E 0o - 0 i

(DM"H)TW DMiIII = E i E : E (l < i < n) b

i 0 e 0 i

0 - 0w 0 - 0 W0 -0

0 -~ 010 010 - 0
. : . :
| |

0 - 0; 0 0 ;0 ]

where W appears in the ((i,1),(i,1)) block and in the ((i,m),(i,m)) block, —W appears in
the ((i,1),(i,m)) block and in the ((i,m),(i,1)) block, and all other blocks are zero.

By Equation 4.3.2 the product (DM,)" W DM has the form
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0 - 000 010 - 0]
-l - l- .
:i : i :
0 - 010 010 - 0
DM )'WDM, = 0 OE i _WEO 0 1<i<n. 1<j<m-1
OM)WOM; =g .. ol-w w lo .. of UZTEmI=I=M=D:
0 . OE 0 0 EO . 0
I E
0 - 010 010 - 0

where W appears in the ((i,/),(i,j)) block and the ((7,j+1),(i,j+1)) block, -W
appears in the ((i,j +1),(i,)) block and the ((i,),(#, +1)) block, and all other blocks

are zero.

0! 0 )
i ” TSy To T T
Consequently, Z(DM[,)’WDM,J. =0 WA A, W2 0],
s (T; """ 0o To'
Wl—lere VVIII Bloc Dlag(W2 f’V—:ime‘. b W) 2
QW -W 0 0 W]
W W W 0 0
. 0 -W 2w -Ww :
VI/IIIZ AIIIAIII I/I/Illz = . . .
. .0
0 0 -W 2W -W

and appears in the i-th diagonal block of size mcxmec (1<i<n); all other blocks are

zero. Summing these block matrices over i leads to
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-
~l—

Z(DM”)TW DM[/ = BlOCk Dlag( I/-Vm% Az;tAm W;n% CR I/_V;, Az;rAm l—/1’71:1 )

~ g
Elj §Sr;,' n—times

W3 . Block Diag( AT A, -, AL A, ) -T2

n-times

il
Bl

1
TO.W?
II.Q Q.W/:nn’

which establishes Equation 4.2.a.

Next, we'll show that DN,, and DN;; are block matrices of the following form:

/

where I denotes the ¢ x ¢ identity matrix and appears in the (1, ) - block, -I appears in

the (n, ) - block, all other blocks are zero, and there are nm blocks of size ¢x ¢ . And

(1gigsn-1, 1<j<m), , (4.3.6)

where -I appears in the (i, ) - block, I appears in the (i +1, ) - block, all other blocks
are zero, and there are nm blocks of size cx c.

Choose 1< j <m. The k-th component of N, : R™ — R® is
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N;y',k () = Ui — Uik (1<k<o).

Thus, the [k,(r,s,1)] entry of DN, , denoted by (BN} (;..) > is

(0 ifs#]
0 ifr#k
aNni,k 1
DN,k rsn = au' =10 ifr+ln (r,s,t)elnd, 1<k<c. (43.7)
rs 1 if r = 1’S — JI’{ — k
-1 if r=ns=jt=k

The (r,s)-th c¢xc block of DN, is denoted by (DN,,). .., (Isr<n, 1<s< m) .

AN,
Its (k,t) entry is —é,;ﬂk— (1<k<c, 1<t<c). By Equation 43.7, (DN,). .
satisfies
0 ifs=#j
(DN ) if r£L,n (<r< 1< s<m)
'tr\'t= . . -r—n, sssm).
W Ilr ) I ifr=15s=]

1 ifr=ns=j

This establishes Equation 4.3.5.

Choose 1< j<mand i €{l,2,--,n~1}. The k-th component of N : R" — R® is

N[i,k (w) = Uijk ~ Ui jk (<gk<o).
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Thus, the [k,(r,s,t)] entry of DN , denoted by (DN;), .., »1S

i 2

(0 ifs=j
0 ifrek
Ny LT
ON i =5 — =10 i reiitl (rys,f) elnd, 1<k<c. (43.8)
P 1 ifr=iels=jt=k

-1 ifr=is=jt=k

The (r,s)-th cxc block of DN, is denoted by (DN,), .., (ISr<n, 1<s5s<m).lIts

. ON; : :
(k,t) entryis > vk (I£k<ec, 1<t<c).ByEquation4.3.8, (DN;),,,.,., satisfies

rs,!

0 if s#j

if r#i,i+1

(D.N',j),'(,v,,.) = (1<r<n, 1<s<m).

I ifr=i+l,s=

1 ifr=is=j

This establishes Equation 4.3.6.

By Equation 4.3.5 the product (DN,,)"# DN, has the form
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0 00 - 0,0 0
! |
| |
0 ! ! 0
4 o -
0 : : 0
| 1
| |
| |
0 010 01 0
_____________________ | e e e o e e e
0 010 L0 0
(DNI!f )IW DNlli = i i
0 0 010 0
0 o0 00 e 0
1 1
| |
| I
0 E i 0
W | | W
0 ! i 0
: :
| |
0 0:0 0.0 0]
(1<j<m,

where W appears in the ((1,/),(1,7)) block and in the ((n,/),(n,j)) block, -W
appears in the ((1,7),(n,)) block and in the ((n,7),(1,/)) block, and all other blocks

are zero. Consequently,

W, 10 01 -7,
PR I S S | P,
0 10 - 0} O
. . [ ! .
> (DN,)'WDN,, =| : | T
j=1
010 2 01 0.
W, 10 - 01T,
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where the size of the blocks is mcxmc, W, = Block Diag(W,W,---,W) appears in the

m

m—timey

(1,1) block and in the (n,n) block, —W  appearsinthe (1,n) block and in the (n,1)

m

block, and all other blocks are zero.

By Equation 4.3.6, the product (DN,;)"# DN ; has the form

0]

0 | : |
. i ] i
i | |
| l I
R o T L e
i 0 010 071
l I 5
| | ]
T o |
: W 4 :
| 0 E 0 E
| | i
l : g
] 1 Q 0:0 0.
DN ) WDN, =|-------- i
(BN, y 1 0 010 01
a | |
| ] |
l 0 { 0 l
1 ]
| W : w |
e o o
| 1 {
I i |
0 010 0!
________ e o e e e e
| l 1 0
] 1 I I
. | ] |
N | | |
' 0 | | |
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where W appears in the ((i,/),(i,j)) block and the ((i+1,/),(i+1,7)) block, -W
appears in the ((i,),(i+1,/)) block and the ((i+1,/),(i,)) block, and all other blocks
are zero. Consequently,

0 -0/ 0 0 10 - 0
s o
N o
0 o 03 0 00 - 0
| == = |
"/_j(DN..)”'WDN...—. 0 - OE W _E/"'EO 0 (<i<n-1),
= i i 0O -+ 0 ! _W;” - ,L() 0
0 01 0 0 {0 0
N : I . H
| L :
0 - 01 0 0 10 - O]

where the size of the blocks is mcxmc, W, appears in the (i,/) block and in the
(i+1,i+1) block, -7, appearsinthe (i,i+1) block and inthe (i+1,i) block, and all

other blocks are zero. Summing these block matrices over i leads to

(oW W, 0 0 -,

_V_V—m 2VVm —Wm 0 0
son,ywon, =| ¢ T e T =W ATA, TS
S o
' 0 0 - m ZVV'” _Wlll

-7, 0 0o -, 2w, ]

which establishes Equation 4.3.b.

Proof of Proposition 4.4

By Propositions 4.2 and 4.3,D?F* =2.W, -y i -[QTQ +ATA ]-W

m n=n nm °

= o=
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Thus, as in the proof of Proposition 3.8,

W'D*Fru=2-u"W, u-y W' -[QTQ +ALA ]W;jl.u

nm n n

nm

—1
= 2 .“ Wlllfl u

]

2 p— |
—}/-[“QW7 u

L ]
+“ A" WI"?‘ u

nm

22| i -y flaf +ha, F]| 7 u]

—1 2
=p-r-(lel+la )| 7duf -

Since y =%, u'D?*F*u>0 forall ueR™ provided | Q| +]A, | <8. But
| Q| and | A, || equal the largest eigenvalue of Q7Q and A%A,, respectively.

These eigenvalues are bounded by 4 by Fact 3.8.1, Equation 3.3.8, and the fact that A,

has the same form as A and Q is a block diagonal matrix with diagonal blocks equal
to A,, which has the same form as A . Therefore, #'D*F*u20 forall ueR™

and F* isconvex.
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